Global figures for a global challenge: the energy supply in the 21st century

Antoine Moreau

Institut Pascal, Blaise Pascal University, France CMIP, Duke University, USA

CAL

Back in 1800

- First high pressure steam engines
 - Beginning of the industrial revolution
 - Extensive use of fossil fuels (coal first)
- First worries about the finite ressources provided by nature (Malthus, 1798)
 - The population reaches 1 billion human beings
 - Only renewable energies so far...
 - **Gave up inventing perpetual motion**

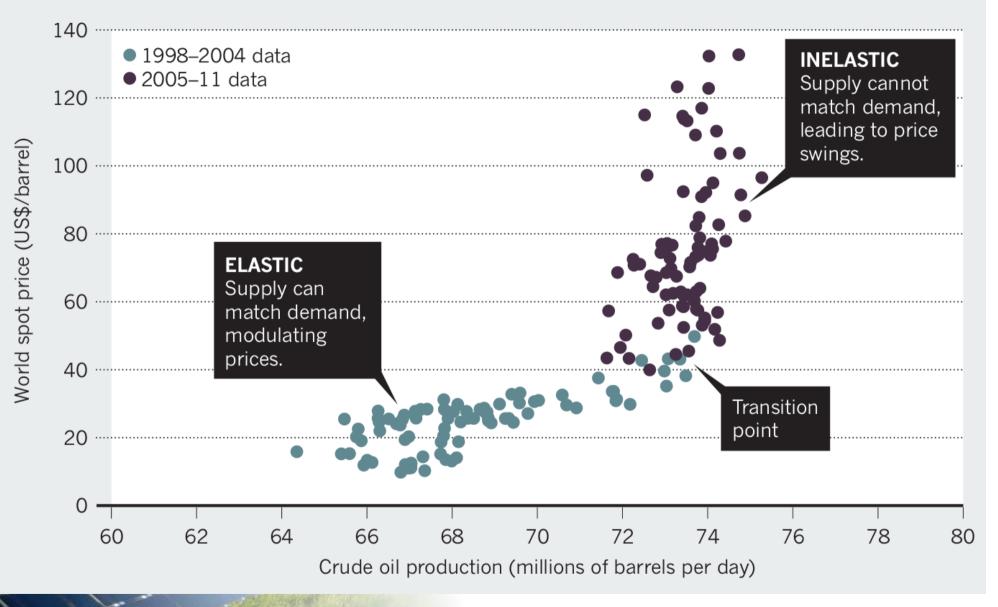
Nowadays

- We are consuming 500 ExaJoules (of oil equivalent)
 - Oil 33.6% (share declining, consumption increasing +3.1%)
 - Coal 29.6% (share increasing)
 - Gas 23.8% (share increasing +7%)
 - Nuclear (5.2%)
 - Renewable energies 7.7% (6.5% hydro)
- Still growing
 - Average growth of 2%, 5% last year
 - 0.7% growth per capita
 - **Increase in population and energy are linked**

Eternal energy growth ?

- It's been 200 years since the energy consumption growth started (more than 2% at that time)
- 2% average growth for the last 30 years
- How long can we sustain a 2% energy consumption growth ?
 - In 350 years from now, all land should be covered with solar panels with a 15% yield.
 - In 120 years with a 5% growth.

Luckily, the population is about to stabilize. A 1% growth is likely.


Hitting the ceiling

- We have consumed about half of the available oil
 - Easier to manipulate (liquid)
 - High energy density (around 10 kWh per kg)
- Tipping point ?
 - From an elastic situation (gently modulating prices, supply can match demand)

To an inelastic situation (price swings, no spare capacity)

PHASE SHIFT

The abrupt change in oil economics can be seen in this scatter plot of production versus price.

J. Murray and D. King, Nature 481, 433 (2012)

Outlook

- When will we have serious energy supply issues ?
- Is Nuclear Power able to help ?
- Can Renewable Energy (RE) sources be the solution ?
- What impact on the environment ?

• Can energy be saved ?

Future trends

When will we have serious energy supply issues ?

Oil

Close to the maximum production

- Despite shale oil and sand oils (small part of the proven reserves)
- Despite better retrieval methods
- Maximum oil production in 2008
- Discoveries : 15 Gb in 2011, consumption 30 Gb
- EROI is quickly declining
 - 100> in the 30s
 - 30 in the 70s
 - 10 for conventional oil in 2005
 - **2 to 5 for unconventional nowadays**

When... : Declining oil will probably be the signal

- Around 1000 billion barrels left (6500 EJ)
- Decline in 2020 +/- 5 years probably
- No real substitute for oil
 - Transportation is heavily dependent on oil (other usages will stop).
 - Our industry is not ready (CTL,GTL)

Rise in prices – any forecast is extremely difficult.

Gas

- A lot of gas left (6500 EJ)
- Decent EROI (10)
- Not much to expect from better technology, here :
 - 70% of gas can be extracted with existing technologies.
- Decline in production can be reasonnably expected 10 years after oil.

Coal

- A lot of coal left (26000 EJ)
- Very high EROI (80)
 - Easily available
- Used for electricity production essentially
 - 50% consumed by China
- Decline in 40 year maybe if the energy consumption growth is around 2%
 - C-C bounds means more carbon dioxide eleased.

Can Nuclear Power help ?

Current nuclear power

- Currently : about 9 EJ
- 3rd Generation :
 - 2.85 MT of U235 accessible
 - 17.1 MT ultimately
 - Could provide 9 EJ for hundreds of years
 - But not 500 EJ per year
 - EROI from 5 to 15
 - 6 years for an EPR power plant

Future of nuclear power

- 4th Generation (breeders)
 - Could be a solution for thousands of years.
 - Not ready before at least 30 years
- Nuclear fusion
 - Would be a solution
 - Not ready before 100 years
 - We don't know if it will be ready some day

Can Renewable Energy be the solution ?

Global overview

- RE has to be the solution
 - 2100 : very low fossil fuel reserves
 - or very low use of fossil energy anyway
- RE is abundant (per year)
 - Solar energy 3900000 EJ
 - Wind 28 400 EJ
 - Biomass 3000 EJ
 - Hydro 150 EJ
 - **Geothermal 1300 EJ**

Solar energy

Photovoltaics

- Quite low EROI : around 7 (but 30 years !)
- "Energy cannibalism"
 - Expensive
 - Efficiency is not the problem
- 0.01 EJ in 2005 with a 20% growth :
 - 2.5 EJ (oil equivalent, 1EJ actually) in 2030
 - 96 EJ in 2050 (means 100 EJ spent)
- Potential 1600 EJ
- Intermittent
- Concentration Solar Plants
 - Project only (DESERTEC in the Sahara)
 - Unknown EROI
 - **Melted salts for energy storage**

Wind

- High EROI : 18
- Actual : 1.2 EJ
 - (3.2 EJ oil equivalent)
- Potential : 230 EJ
 - 24 millions of 2MW wind turbines
- Growth of 20 to 30% a year
 - 2030 : 100 EJ (oil equivalent)
 - 2050 : Full potential
- Highly intermittent
 - Works only 30% of the time
 - Equivalent capacity with fossil fuel needed
 - Not everything would be used

Hydroelectricity

- Actual : 12 EJ (32 EJoe)
- Potential : 50 EJ (131 EJoe)
- EROI > 100
- Perfect energy source

Biomass

- Biofuel (ethano, biodiesel)
 - EROI : 1 to 2
 - Nowadays 2 EJ
 - Especially subsidized in the US (corn ethanol, EROI subject to debate)
 - Energetically not sound.
- Biomass
 - Yield 0.2 to 0.5% for wood
 - EROI : extremely high
 - Potential : 200 EJ

Renewable Energy Sources 2050

- Renewable energy could *potentially* provide 550 EJoe
 - Solar : 100 EJoe
 - Wind : 100 EJoe
 - Hydro : 131 EJoe
 - Biomass : 200 EJ
 - Others 20 EJoe
- Compared to the estimated demand (1% growth only) : 800 EJ
- Huge effort
 - From 2020 to 2050
 - Distributed energy production
 - **Smart grid (>20% intermittent sources)**, storage

Impact on the environment

- Consuming energy has a lot of impact on environment
- Climate change :
 - 500 ppm carbon dioxide in the atmosphere ?
 - Well above the recommended 2 C degrees increase in the average temperature (IPCC 2007)
 - May change around 2020.
- Ocean acidification (CO2)
 - **Biodiversity loss due to land occupation** (biomass, hydroelectricity, wind turbines, solar panels)

Can energy be saved ?

Energy consumption : what for ?

- In developed countries (OECD),
 - From 23% to 33% is consumed by housing (for heating and air conditioning mainly, lighting only a bit)
 - A third is used by transportation (oil)
 - Half can be attributed to personal vehicles
 - From 25% to 33% by industry
 - Essentially for refining, metals and paper
 (commodities)
 - Around 20% by services
 - From shops to schools. For heating, lighting and appliances (computers).

Saving Energy

- This consumption scheme is the result of cheap (virtually free) energy
- Heating is unnecessary, AC can be more efficient
 - Well insulated homes, smart houses
- Actual personal cars are a waste of energy (and of time in large cities)
 - Usually oversized
 - 15% average yield of the motors
 - **Energetically** weird situations
 - Tomatoes grown in northern countries like Netherlands and canada, during winter, and exported to France or the US respectively.

Efficient energy use

- Huge shift towards efficient energy use
- Most obvious improvements
 - Insulation
 - Trains, bicycles and boats instead of cars and trucks (infrastructures !)
 - Light electric cars, hybrids for long distances
 - Less commodities (refined oil, plastic, paper and metals)
- Developped countries
 - 200 GJ per capita per year
 - 63 GJ would probably be enough for almost the same level of comfort
 - Around 600 EJ for the whole world

Trends

Short term (ten years)

- In the next five to fifteen years or so, we will have to adapt to a decreasing supply of oil.
- Oil prices will rise :
 - Oil will be used for transportation essentially. Heating will be provided by gas, heat pumps and avoided by better insulation.
 - Cars will shrink and be more efficient (already happening)
 - Electric and rechargeable hybrid cars
 - **Biofuels won't help.**

Middle term

- Electricity production will continue to grow quickly
 - Electric cars, trains
 - Heat pumps and appliances
 - More nuclear power after 2020
- RE will be developped heavily
 - Intermittent (solar and wind)
 - Hydro
 - Biomass (for electricity generation, not for fuels). Very low yield, but easy (EROI>100).

• Smart grids and storage will have to be ready at that point.

Long term

• By 2100

- We should not be dependent on fossil energy any more.
- Fossil fuels will have provided the energy for humanity to grow, progress and let's hope, learn to leave without them.
- The climate will probably have warmed a lot, except if the decrease in oil production initiates a vast transition.
- Let's just hope a negative answer is not the solution to Fermi's paradox (that extra-terrestrial civilizations have disappeared because they were not sustainable).

Suggested references

[1] P. Moriarty and D. Honnery, Energy Policy 37, 2469 (2009)[2] P. Moriarty and D. Honnery, Renewable and Sustainable Energy Reviews(2011)

[3] D. Murphy and C. Hall, Annals of the New York Academy of Sciences 1185, 102 (2010)

[4] S. Massoud Amin and B. Wollenberg, Power and Energy Magazine, IEEE 3, 34 (2005)

[5] Statistical Review of World Energy 2011, B. Petroleum

[6] J. Murray and D. King, Nature 481, 433 (2012)

[7] I. P. on Climate Change, Climate Change 2007 Synthesis Report, Tech. Rep. (IPCC, 2007)